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Abstract. Direct imaging is a powerful tool for exoplanet atmosphenaracterization. High performance of
these techniques requires extreme wavefront correctiogrimind-based instruments as well as space projects.
Wavefront sensors are usually physically separated frarctimmon optics by a beam splitter in classical AO
system. This separation introduceffeliential aberrations that are not measured by the waveseorgor, which
limits the performance of a planet finder instrument. We psgpto use the Self-Coherent Camera (SCC) to
measure the aberrations directly in the final coronagragtience focal plane. The SCC is based on the principle
of light coherence and allows us to estimate the wavefrantgupstream the coronagraph by spatially encoding
the speckles with fringes in the final image. After recallihg SCC principle, we will present laboratory results
on speckle suppression and compare them with expectedparices from numerical simulations.

1 Introduction

Understanding the formation, evolution and surprising ity of exoplanetary systems is one of the
few major challenges of current astrophysics. The intémnat community has defined a long-term
strategy based on both theoretical works and the study amdiatenent of dedicated facilities from the
ground and from space. High contrast direct imaging has goiitant role to play in the completion
of indirect detection techniques such as transits and Iradiacities. Today, a few young planets at
large separations have already been detected [1,2] andctiemiacterization is starting. Ultimately,
direct detection could allow us to fully characterize thegarties of exoplanets, including indications
of habitability and physics and chemistry of their atmosgh&he required contrast capability for
exoplanet imaging is the main limitation to discoveriestiistfield. The first generation of ground-
based instruments dedicated to high contrast imaging rewtly being developed both in Europe and
in North America by large international consortia [3,4].€Ble instruments are now close to starting
operations, with a contrast performane&0-° to 1077 for detecting young Jupiter-like planets within
0.5 arcsec from their star, well inside the stellar halo.

A dramatic improvement of contrast performance is mangatostudy lower mass planets like
Neptunes or possibly rocky planets. This is one of the keyivation for the future extremely large
telescopes (ELT), the dominant infrastructures of tomelsoptical and infrared astronomy. This dra-
matic improvement of exoplanet detection performanceirequa deep understanding of the limita-
tions for high contrastimaging and new technological Sohgthat can self-calibrate the observations.
One solution proposed for the direct planet detection on iEltie Self-Coherent Camera (SCC). The
SCC is a concept of high contrast imaging instrument [5] thkés benefit from the coherence be-
tween the stellar leakage speckles and the stellar lighttej by a coronagraph. This property of
coherence is used to measure the residual phase aberréfian detect a planet among the fringed
speckles [5]. We will only describe the first capability instbaper. Preliminary simulation of the SCC
performance on high contrast imaging instrument of the geiam ELT are promising [7]. However,
at this stage of the development, a laboratory test to vérdycapability of a real setup is mandatory.
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In this paper, after recalling the principle of the SCC, wegant how we estimate the phase from the
SCC focal plane image in the case of a real coronagraph. Afteref description of the test bench,
we present laboratory results and compare them to numeiinalations.

2 Principle of phase estimation in the Self-Coherent Camera
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Fig. 1. Principle of the SCC coupled with a Four Quadrant Phase M&@P\M) coronagraph. The image on the
right shows the light distribution in the pupil plane downestm the coronagraphic focal plane.
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A robust design can associate the SCC with most of the coraphg by simply modifying the
Lyot stop geometry [6]. The principle of the SCC coupled véthour Quadrant Phase Mask (FQPM)
coronagraph [8] is shown in Figure 1. As in the classical lgmionagraph, the star is focalized on a
coronagraphic mask. In the pupil downstream of the focal@lmask, an unaberrated stellar light is
fully diffracted outside of the pupil geometry [9]. The Lyot stop is ified to add a reference pupil
(Figure 1, right). When the beam upstream the coronagrapbesrated, there is residual light in the
science pupil (classical Lyot stop) that can interfere wlinreference pupil to create fringed speckles
on the detector, which can be used to measure the phasetairesr&erformance of the SCC have
already been assessed for space-based [10] as well as ¢vased observation [7].

Below, we describe the formalism to estimate the phase ubm&elf-Coherent Camera coupled
with a FQPM coronagraph.

Following the formalism given in Galicher et al. 2008 and @4, 10], we can write the monochro-
matic interferential image on the detector
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whereAs(a) andAg(a) are the complex amplitudes in the focal plane that progatibugh the
science pupil and the reference pupil respectivelis the focal plane angular coordinat, is the
wavelength considered agglis the distance that separates the two pupils.

As already described in previous work [6,10], we can exiifaetmodulated pait (@) or | («) of
I(@) if & > 2t + 2= with D, the Lyot diameter an®r the reference pupil diameter. To do it, we
select one of the two lateral peaks of the inverse Fouriestoam ofl and apply a Fourier transform
to it. The recentredl. contains a combination &s andAgr and can be written:

I_(e) = As(@)Ar(@)* (2)

For monochromatic images, the complex amplitude downstrib@ coronagraplis(u) (u is the
pupil plane coordinate) can be described uding
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With F~1 describing the inverse Fourier transform. We want to gek bathe complex amplitude
in the upstream pupil plang;, which contains the phase aberrations we try to estimatgalysopa-
gation model trough coronagraph can give us the relatiomdzt the downstream complex amplitude
¥s, the upstream complex amplitugg, the coronagraphic focal plane mask functidnand the Lyot
stopL.

vs = (s * FH(M))L @

wherex denotes the convolution. To simplify the equations, from oo, we drop both coordinates
in the pupil and the focal plane. Assuming small phased amplitude defects, we can simplify the
upstream complex amplitudg,

Yys = Pexpl¢g +a) ~ P+ipP +aP (5)

EqQ. 4 can be rewritten:

ws = (P+ F{(M)) L + (P(ig + a) » FI(M))L ®)

The first term is equal to zero for a coronagraph that canlytseippress the field inside the pupil
downstream the focal mask. This is the case of the FQPM cgraph assuming an infinite field,
perfect transitions, an unobstructed pupil, and monochtirfight [9].

Removing the first term and using the definition/efin Eq. 3, we write :

P(i « F7Y(M L:F—i['—‘] 7
(Pip + ) « F(M)) A @)

Table 1. Equations used to calculate images shown in Figure 2.

Image 1 Image 2 Image 3 Image 4 Image 5

gP | P F M) | (¢P+ FHM))P | {[(¢P = FX(M))P|+ F(%)| P | Image 1- Image 4

The convolution ofpP (or aP) with a finite function will dilute the information outside. As a
consequence, even farequal toP, ¢P (or aP) cannot be fully retrieved. However, for small inner
working angle coronagraphs like the FQPM, we can expecttigtonvolution will be rather limited
because theffect of such coronagraph are limited to the central part ofirtiege. Thus, large and
mid spatial frequencies should not be vefieated. We simulate the case of the FQPM coronagraph to
verify that. The results are shown in Figure 2. The five imagressimulated following the equations
described in Table 1.

Fig. 2. Images calculated using equations given in Table 1 to coebarphase with its estimation by the SCC.
Same linear scale for all images
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On the left side (image 1), we show the simulag&tthat is a random phase with a Power Spectral
Density (PSD) inf=2. On image 2, we show the distribution of the convolution lesw the phase
and the Fourier transform of the coronagraphic mask befagpé/ang the Lyot stop here assumed to be
equal to the pupiP. The filtering by the Lyot is applied on image 3. We can notied the information
removed in the filtering is rather small. On image 4, we trygiplg a convolution by~ (%) and a
filtering by the pupil function since we are only interestgdtioe information inside the pupil. Image
4 and 1 are very alike but theftkrence (image 5) showsffaction dfects certainly from the FQPM
mask inside the pupil, especially around the edges. Themaain square (RMS) of theftBrence
amounts to about 30 % of the RMS deviation of the phgaBe Even though this seems large, we
decide to assume that this estimate is close enough to ttse fibwaiteration to converge to the right
phase. It was proved to be working with numerical simulafitd] and we show in Sect. 3.3 that it
is also working on laboratory bench. Applying the same psead# deconvolution and filtering by the
phase to both terms of Eq. 7, we can rewrite Eq. 7:

I_
MAg
Note that we can divide byl only if M is never equal to zero (practically, this is the case for phas

mask coronagraph). Note also ttrat'(M) andF~* (ﬁ) are real becaudd is real and even in the case
of the FQPM. Thus the real part (amplitude) and the imagipary (phase) can be treated separately

in Eq. 8. Assuming we are working with Lyot stop size closeht® pupil one, we suppose that the left

term of Eq. 8 is a good estimate of phase and amplitude defextanage 4 is almost equal to image
1. Thus we replace the left term of EQ. 8 i¢simate + Bestimate:

{[(WP*F_l(M))P]*F_l(%)}P+{[(aP*F‘l(M))P]*F‘l(%)}PzF‘l[ P @®

idestimate + Bestimate Ft [ N:AI*J P 9

Practically, the diameter of the reference pupil is muchlenthan the Lyot stopAr is then much
larger than the diiracted core from the Lyot stop. The angular frequenciestdmabe corrected by the
deformable mirror (DM) are limited by its number of actuatofhe amplitudédr can be rather flat
over these angular frequencies if the reference pupil idl@naugh. In this caseédr is approximate
to a constant and the wavefront estimation is:

. Tl
| Pestimate + Aestimate © F ! [M] P (10)

Practically, we select one of the two lateral peaks of theris& Fourier transform dfand apply
a Fourier transform to it. The recentrédis then divided by a numerical madk. We extract the
imaginary part of the inverse Fourier transform of this fiimrec to get the estimated phasggsimate that
will be used to calculate the voltage to be send to the DM ferghase correction. To avoid aliasing
from high order phase defects in our phase estimation, walsamapply td _ a filter that suppresses
all frequencies larger than the cu-&requency of the DM.

3 Laboratory tests
3.1 Test bench description

The test bench we are using to measure the SCC performanesdsiied in details in Mas et al.
2010 [11]. The main components used for the tests descnibidsi paper are:

1. An optical fiber source that is fed by a laser diode fiber (@ 1@2)
2. Afully reflective optical design creating 3 pupil planekere we place:
(a) An entrance pupil plane of 8.1 mm and a TT mirror
(b) A Boston Micromachines deformable mirror (DM) of 32x3&wators with a pitch of 0.3 mm
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(c) The Lyot stop of 8mm (99% filtering) and a reference pupd.@ mm with&y = 13 mm
3. And 3 focal planes, two of which including:
(&) A monochromatic Four Quadrant phase mask [8] optimine&25 nm
(b) A CCD camera of 640x480 pixels (400x400 used) with readoise of 15 e- and a Full Well
capacity of 13 000 e-
4. A set of Neutral Density filters to record PSF images (n@cagraph) and coronagraphic images
5. An additional lens that can be inserted in front of the aanfier pupil plane imaging
6. A software (labview) that can control the DM using contr@trix built as described below

To take into account all theffects of the laboratory setup and thiéeets of the approximations
we took in the previous section, we record an interactiorrisnaly pulling one actuator at a time
and recortegimate aNdacgimate- 10 remove the phase and amplitude defects of the benchcthal a
measurement is theftitrence between the estimations when pushing and pullingdtuator. Since
the DM introduces only phaseesimate Will be null or almost for an optical path fierence equal to
zero between the science channel and the reference chénnaig 1). Thus, we only USgugimate tO
build the interaction matrix. Example @tgimae fOr a few actuators are given in Figure 3. The cross
is an artifact introduced by the convolution M/andﬁ of the actuator phase influence. The central
core is an estimation of this phase. The actuators locatettieedges are not very well estimated
because of the coronagrapfiieet and the readout noise (Figure 3). To remove most of thésete
(cross, noise, edge actuators badly estimated), we choasedte a synthetic interaction matrix using
a gaussian function that fits the core of the image.

Fig. 3. Recorded estimation of the actuator phase influence. Sawer paw scale for all the actuators. The scale
is stretched to showfkects of actuators at the edge of the pupil. The dark crossistdl® times fainter than the
central core for central actuators.

First, the geometry (pitch, orientation) of the actuatad g8 measured on thgugimate Of the 10x10
most central actuators. On the same actuators, we measuradtlian width in both direction and
the amplitude of the central core with a gaussian fitting idlym. A synthetic grid of actuators using
these values is then created to simulate our synthetiictien matrix. We remove the edge actuators
from the matrix when they have a low impact on the pupil phase.

The generalized inverse of the matrix is calculated usingngu$ar Value Decomposition algo-
rithm and removing the lowest singular values. The contralrim obtained can be multiplied by the
vector measuringesimate 0 calculate the set of voltages to send to the DM. We use alsimfe-
grator control low with a relatively low gairy(< 0.4). Note that the gain is proportional to the total
flux of the source [6]. As the aberrations are corrected, theragraph performance is getting better
and the speckles are getting fainter. Since we correct giéuals on several order of magnitudes, we
have to increase the source flux to minimize the readout ficig@tion and decrease the control gain
accordingly.

3.2 Estimation of bench defects

First, let's estimate the aberrations on our bench beforeection with the DM. These aberrations
include the errors introduced by the DM. We flattened the Diigis. commercial Shack-Hartmann
wavefront sensor using a 32x32 lenslet array. The absohetdgion of the instrument is given to 10
nm but we had to introduce a dedicated optical arm to imagetipd on the sensor. Defects on this
arm have been calibrated using a point source and we expeetisipn of the order of 20 nm over
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the frequency measured by the sensor. We show in Figure lt)ribe average radial profile for the
PSF intensity (without coronagraph) compared to the aeeragjal profile for the image with the sole
coronagraph (no reference pupil). The image corresportditigis last profile is shown in Figure 5
(upper left image).

107

Contrast

Distance in A/D

Fig. 4. Left: Pupil illumination measured on the test bench. Rigiwerage radial profiles of PSF (solid, up), coro-
nagraphic image (solid, bottom), numerically simulatetboagraphic images using phase (dashed) or amplitude
(dotted), and reference image (dashed-dotted).

We compared this profile with several simulated profiles oPMJmages obtained with fierent
phase assumptions. A rather good fit is shown in Figure 4t(ritgshed line) and is drawn for a phase
of 0.3 rad RMS (corresponding to 30 nm RMS) and a PSD of thisglraf ~2°. The low frequency
is a little overestimated between 1 andiZD and underestimated until L& D. But for the spatial
frequency below 13.3/D (cut-of frequency of the DM for this test), this may come from the way w
flattened the DM. Indeed, the DM has been flattened directiyrenest bench so it certainly corrected
part of the bench lowest frequencies that we took good caceni@ct. Since the positioning of the
DM with respect to the sensor was noisy, it may have induce Refirors in the spatial frequency
between 2 and 13.5/D. A peak in the radial profile also appears for spatial freqyemwound 26-27
A/D which corresponds to twice the cuffdrequency of the DM correction. It corresponds to small
scale structure with a typical size equal to the actuatahpis shown on the upper left image in
Figure 5, theses defects are localized on the images andedirknewn features for this DM [12].

We can also estimate the variance of the amplitude defeotg as image of the pupil illumi-
nation recorded on the bench (Figure 4, left). From this imalge level of the amplitude defects is
estimated at about 10% RMS in intensity. Sub-actuator &tras clearly appear, as well as a low spa-
tial frequency &ect coming from the actuators on the edges of the DM. Intrimduthese estimated
amplitude in our simulation can help us take them into actdtisets the level of the residual speckles
if all the phase was corrected. We notice that its level atawie cut-€ frequency does not reach the
residual level of the coronagraphic image. The sub-actsatoctures must alsdfacts the phase but
can not be measured on the pupil illumination and the spatsalution ofpegimate IS NOt good enough
to measure them with our setup. In Figure 4, we also plot tieeame radial profile of the reference
image normalized to the PSF imag@d?). Its contribution to the SCC imagdeis negligible unless
correction level reaches 10or lower. Its relative flatness over the corrected area §1R3%.1/D) is
in agreement with our approximation of a constApthat led us from Eq. 9 to Eqg. 10.

3.3 Laboratory results after correction using phase and amplitude estimated by the SCC

The correction is applied on the DM as described in Sect. Bag. correction converges in a few
iterations to a readout noise limited image. We need to aszdhe source flux, decrease the gain
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accordingly and restart the correction a few times until agch a constant residual speckles distribu-
tion. This final image is shown in Figure 5 (top centered im)agel the average radial profile is given
in Figure 6 (left, solid line) and compared to the case wittcaection (left, dashed line). The DM
helps to decrease by a factor 100 at least the level of thanagraphic image between 2 and 4D
and the mean speckle level is belowt@® between 4 and 12/D.

Phase correction Phast&amplitude” correction

No correction

Recorded datd

Simulated datal

Fig. 5. Comparison between recorded and simulated data withotgat@n, with correction of phase, and with
correction taking into account phase and amplitude. Thiessa power law and the same for all images but
uncorrected image have been divided by 100 to reach the sarge fevel than the corrected images.

We notice that the level of the image after the cfitfeequency is improved by the correction
even if we specifically remove these frequencies from thesgleatimation (Eq. 10). This is certainly
coming from the fact that sub-actuator structures vary wdmrecting and these structures have an
effect at these frequencies and certainly both in phase andtadel At the position of twice the
DM frequency cut-€, the level also seems to improve but this is an artifact cgnfiiom the fact
that diffracted structures saturate the detector (see images ireFayuNe also draw on this figure the
simulated correction assuming the same amplitude and plsasé&sect. 3.2 but with all the frequencies
reachable by the DM set to zero in the phase PSD. We noticdhthdével reached is higher than
expected in the correction area and lower in the external. dtenay be an underestimation of the
amplitude error which should dominate in the correctiornaaed an overestimation of the phase
outside of this area. This also visible when comparing sitea and recorded images in Figure 5.

Since amplitude defects may set the limitation inside theemtion area, we choose to correct
for them in half the field. We use both phase and amplitudeneséis given by Eq. 10 and apply the
technique proposed by Borde & Traub 2006 [13] to estimateditage to send to the DM and correct
for both defects in half the field (top right image in Figure B)e calculate the average radial profile
only on the corrected side (right side) and plot it in Figuneght (solid line). The residual speckles
gets lower than 40~ between 4 and 12/D. We also compare the data to numerical simulation
using the same hypotheses than previously. The level rdasludose to the one simulated except for
uncorrected frequencies where the phase level is over@stinThe underestimation of the amplitude
does not appear on the radial profile but clearly appears wberparing simulated and recorded
images: the left level of the lower right image in Figure 5 isah fainter than the oneffectively
recorded. Increasing the amplitude defects inside theection would better explain the recorded
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image for both sole phase and phasmplitude corrections. Besides, it could also explain itmétéd
level of residual light reached when correcting phase smaty on the full correction area.

Contrast

Contrast

0 10 20 30 0 10 20 30
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Fig. 6. Left: Average radial profile for recorded uncorrected im@tgshed), recorded phase corrected data (solid),
simulated phase corrected data (dotted). Right: Averagjalrprofile for recorded uncorrected image (dashed),
recorded phaseamplitude corrected data (solid), simulated phaseplitude corrected data (dotted).

4 Conclusion

We demonstrated that the concept of Self-Coherent Camempenbwith a Four Quadrant Phase mask
coronagraph is working in laboratory environment with mommmatic source. The simple linear
phase estimation we use is enough to reach correction wafiieement with the simulation. When
correcting phase over the full correction area of the DM%%33.51/D), the level of residual light is
below 31076 between 4 and 12/D mostly limited by amplitude errors. When correcting for paa
and amplitude errors in half the field, the level of the realdpeckles gets lower thanl4’ between

4 and 121/D. Improvements can be obtained when using more optimize@gction algorithm that
minimize the light inside the correction area instead ofimining the phase in the pupil as presented
in this paper. This will be presented in a forthcoming pafdromatic tests must also be performed
to estimate more precisely the overall performance of sndhstrument on a telescope.
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