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Abstract. Direct imaging is a powerful tool for exoplanet atmosphere characterization. High performance of
these techniques requires extreme wavefront correction for ground-based instruments as well as space projects.
Wavefront sensors are usually physically separated from the common optics by a beam splitter in classical AO
system. This separation introduces differential aberrations that are not measured by the wavefrontsensor, which
limits the performance of a planet finder instrument. We propose to use the Self-Coherent Camera (SCC) to
measure the aberrations directly in the final coronagraphicscience focal plane. The SCC is based on the principle
of light coherence and allows us to estimate the wavefront errors upstream the coronagraph by spatially encoding
the speckles with fringes in the final image. After recallingthe SCC principle, we will present laboratory results
on speckle suppression and compare them with expected performances from numerical simulations.

1 Introduction

Understanding the formation, evolution and surprising diversity of exoplanetary systems is one of the
few major challenges of current astrophysics. The international community has defined a long-term
strategy based on both theoretical works and the study and development of dedicated facilities from the
ground and from space. High contrast direct imaging has an important role to play in the completion
of indirect detection techniques such as transits and radial velocities. Today, a few young planets at
large separations have already been detected [1,2] and their characterization is starting. Ultimately,
direct detection could allow us to fully characterize the properties of exoplanets, including indications
of habitability and physics and chemistry of their atmosphere. The required contrast capability for
exoplanet imaging is the main limitation to discoveries in this field. The first generation of ground-
based instruments dedicated to high contrast imaging is currently being developed both in Europe and
in North America by large international consortia [3,4]. These instruments are now close to starting
operations, with a contrast performance> 10−6 to 10−7 for detecting young Jupiter-like planets within
0.5 arcsec from their star, well inside the stellar halo.

A dramatic improvement of contrast performance is mandatory to study lower mass planets like
Neptunes or possibly rocky planets. This is one of the key motivation for the future extremely large
telescopes (ELT), the dominant infrastructures of tomorrow’s optical and infrared astronomy. This dra-
matic improvement of exoplanet detection performance requires a deep understanding of the limita-
tions for high contrast imaging and new technological solutions that can self-calibrate the observations.
One solution proposed for the direct planet detection on ELTis the Self-Coherent Camera (SCC). The
SCC is a concept of high contrast imaging instrument [5] thattakes benefit from the coherence be-
tween the stellar leakage speckles and the stellar light rejected by a coronagraph. This property of
coherence is used to measure the residual phase aberration [6] or detect a planet among the fringed
speckles [5]. We will only describe the first capability in this paper. Preliminary simulation of the SCC
performance on high contrast imaging instrument of the European ELT are promising [7]. However,
at this stage of the development, a laboratory test to verifythe capability of a real setup is mandatory.
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In this paper, after recalling the principle of the SCC, we present how we estimate the phase from the
SCC focal plane image in the case of a real coronagraph. Aftera brief description of the test bench,
we present laboratory results and compare them to numericalsimulations.

2 Principle of phase estimation in the Self-Coherent Camera

Fig. 1. Principle of the SCC coupled with a Four Quadrant Phase Mask (FQPM) coronagraph. The image on the
right shows the light distribution in the pupil plane downstream the coronagraphic focal plane.

A robust design can associate the SCC with most of the coronagraphs by simply modifying the
Lyot stop geometry [6]. The principle of the SCC coupled witha Four Quadrant Phase Mask (FQPM)
coronagraph [8] is shown in Figure 1. As in the classical Lyotcoronagraph, the star is focalized on a
coronagraphic mask. In the pupil downstream of the focal plane mask, an unaberrated stellar light is
fully diffracted outside of the pupil geometry [9]. The Lyot stop is modified to add a reference pupil
(Figure 1, right). When the beam upstream the coronagraph isaberrated, there is residual light in the
science pupil (classical Lyot stop) that can interfere withthe reference pupil to create fringed speckles
on the detector, which can be used to measure the phase aberrations. Performance of the SCC have
already been assessed for space-based [10] as well as ground-based observation [7].

Below, we describe the formalism to estimate the phase usingthe Self-Coherent Camera coupled
with a FQPM coronagraph.

Following the formalism given in Galicher et al. 2008 and 2010 [6,10], we can write the monochro-
matic interferential image on the detectorI:

I(α) = |AS (α)|2 + |AR(α)|2 + AS (α)AR(α)∗ exp

(

2iπαξ0

λ0

)

+ AS (α)∗AR(α) exp

(

−2iπαξ0

λ0

)

(1)

whereAS (α) andAR(α) are the complex amplitudes in the focal plane that propagate through the
science pupil and the reference pupil respectively.α is the focal plane angular coordinate,λ0 is the
wavelength considered andξ0 is the distance that separates the two pupils.

As already described in previous work [6,10], we can extractthe modulated partI−(α) or I+(α) of
I(α) if ξ0 >

3DL
2 +

DR
2 with DL the Lyot diameter andDR the reference pupil diameter. To do it, we

select one of the two lateral peaks of the inverse Fourier transform ofI and apply a Fourier transform
to it. The recentredI− contains a combination ofAS andAR and can be written:

I−(α) = AS (α)AR(α)∗ (2)

For monochromatic images, the complex amplitude downstream the coronagraphψS (u) (u is the
pupil plane coordinate) can be described usingI−:

ψS (u) = F−1

[

I−(α)
AR(α)∗

]

(u) (3)
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With F−1 describing the inverse Fourier transform. We want to get back to the complex amplitude
in the upstream pupil planeψ′S , which contains the phase aberrations we try to estimate. Usual propa-
gation model trough coronagraph can give us the relation between the downstream complex amplitude
ψS , the upstream complex amplitudeψ′S , the coronagraphic focal plane mask functionM, and the Lyot
stopL.

ψS =
(

ψ′S ∗ F−1(M)
)

L (4)

where∗ denotes the convolution. To simplify the equations, from now on, we drop both coordinates
in the pupil and the focal plane. Assuming small phaseφ and amplitudea defects, we can simplify the
upstream complex amplitudeψ′S

ψ′S = P exp(iφ + a) ≈ P + iφP + aP (5)

Eq. 4 can be rewritten:

ψS =
(

P ∗ F−1(M)
)

L +
(

P(iφ + a) ∗ F−1(M)
)

L (6)

The first term is equal to zero for a coronagraph that can utterly suppress the field inside the pupil
downstream the focal mask. This is the case of the FQPM coronagraph assuming an infinite field,
perfect transitions, an unobstructed pupil, and monochromatic light [9].

Removing the first term and using the definition ofψS in Eq. 3, we write :

(

P(iφ + a) ∗ F−1(M)
)

L = F−1

[

I−
A∗R

]

(7)

Table 1. Equations used to calculate images shown in Figure 2.

Image 1 Image 2 Image 3 Image 4 Image 5

φP φP ∗ F−1(M)
(

φP ∗ F−1(M)
)

P
{[(

φP ∗ F−1(M)
)

P
]

∗ F−1( 1
M )

}

P Image 1- Image 4

The convolution ofφP (or aP) with a finite function will dilute the information outsideP. As a
consequence, even forL equal toP, φP (or aP) cannot be fully retrieved. However, for small inner
working angle coronagraphs like the FQPM, we can expect thatthis convolution will be rather limited
because the effect of such coronagraph are limited to the central part of theimage. Thus, large and
mid spatial frequencies should not be very affected. We simulate the case of the FQPM coronagraph to
verify that. The results are shown in Figure 2. The five imagesare simulated following the equations
described in Table 1.

Fig. 2. Images calculated using equations given in Table 1 to compare the phaseφ with its estimation by the SCC.
Same linear scale for all images
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On the left side (image 1), we show the simulatedφP that is a random phase with a Power Spectral
Density (PSD) inf −2. On image 2, we show the distribution of the convolution between the phase
and the Fourier transform of the coronagraphic mask before applying the Lyot stop here assumed to be
equal to the pupilP. The filtering by the Lyot is applied on image 3. We can notice that the information
removed in the filtering is rather small. On image 4, we try to apply a convolution byF−1

(

1
M

)

and a
filtering by the pupil function since we are only interested by the information inside the pupil. Image
4 and 1 are very alike but the difference (image 5) shows diffraction effects certainly from the FQPM
mask inside the pupil, especially around the edges. The rootmean square (RMS) of the difference
amounts to about 30 % of the RMS deviation of the phaseφP. Even though this seems large, we
decide to assume that this estimate is close enough to the phase for iteration to converge to the right
phase. It was proved to be working with numerical simulation[10] and we show in Sect. 3.3 that it
is also working on laboratory bench. Applying the same process of deconvolution and filtering by the
phase to both terms of Eq. 7, we can rewrite Eq. 7:

{

[(

iφP ∗ F−1(M)
)

P
]

∗ F−1(
1
M

)

}

P +

{

[(

aP ∗ F−1(M)
)

P
]

∗ F−1(
1
M

)

}

P = F−1

[

I−
MA∗R

]

P (8)

Note that we can divide byM only if M is never equal to zero (practically, this is the case for phase
mask coronagraph). Note also thatF−1(M) andF−1

(

1
M

)

are real becauseM is real and even in the case
of the FQPM. Thus the real part (amplitude) and the imaginarypart (phase) can be treated separately
in Eq. 8. Assuming we are working with Lyot stop size close to the pupil one, we suppose that the left
term of Eq. 8 is a good estimate of phase and amplitude defects, i.e. image 4 is almost equal to image
1. Thus we replace the left term of Eq. 8 byiφestimate + aestimate:

iφestimate + aestimate ≈ F−1

[

I−
MA∗R

]

P (9)

Practically, the diameter of the reference pupil is much smaller than the Lyot stop.AR is then much
larger than the diffracted core from the Lyot stop. The angular frequencies thatcan be corrected by the
deformable mirror (DM) are limited by its number of actuators. The amplitudeAR can be rather flat
over these angular frequencies if the reference pupil is small enough. In this case,AR is approximate
to a constant and the wavefront estimation is:

iφestimate + aestimate ∝ F−1
[ I−

M

]

P (10)

Practically, we select one of the two lateral peaks of the inverse Fourier transform ofI and apply
a Fourier transform to it. The recentredI− is then divided by a numerical maskM. We extract the
imaginary part of the inverse Fourier transform of this function to get the estimated phaseφestimate that
will be used to calculate the voltage to be send to the DM for the phase correction. To avoid aliasing
from high order phase defects in our phase estimation, we canalso apply toI− a filter that suppresses
all frequencies larger than the cut-off frequency of the DM.

3 Laboratory tests

3.1 Test bench description

The test bench we are using to measure the SCC performance is described in details in Mas et al.
2010 [11]. The main components used for the tests described in this paper are:

1. An optical fiber source that is fed by a laser diode fiber (@ 625 nm)
2. A fully reflective optical design creating 3 pupil planes where we place:

(a) An entrance pupil plane of 8.1 mm and a TT mirror
(b) A Boston Micromachines deformable mirror (DM) of 32x32 actuators with a pitch of 0.3 mm
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(c) The Lyot stop of 8mm (99% filtering) and a reference pupil of 0.3 mm withξ0 = 13 mm
3. And 3 focal planes, two of which including:

(a) A monochromatic Four Quadrant phase mask [8] optimized for 625 nm
(b) A CCD camera of 640x480 pixels (400x400 used) with readout noise of 15 e- and a Full Well

capacity of 13 000 e-
4. A set of Neutral Density filters to record PSF images (no coronagraph) and coronagraphic images
5. An additional lens that can be inserted in front of the camera for pupil plane imaging
6. A software (labview) that can control the DM using controlmatrix built as described below

To take into account all the effects of the laboratory setup and the effects of the approximations
we took in the previous section, we record an interaction matrix by pulling one actuator at a time
and recordφestimate andaestimate. To remove the phase and amplitude defects of the bench, the actual
measurement is the difference between the estimations when pushing and pulling theactuator. Since
the DM introduces only phase,aestimate will be null or almost for an optical path difference equal to
zero between the science channel and the reference channel (Figure 1). Thus, we only useφestimate to
build the interaction matrix. Example ofφestimate for a few actuators are given in Figure 3. The cross
is an artifact introduced by the convolution byM and 1

M of the actuator phase influence. The central
core is an estimation of this phase. The actuators located onthe edges are not very well estimated
because of the coronagraph effect and the readout noise (Figure 3). To remove most of these effects
(cross, noise, edge actuators badly estimated), we choose to create a synthetic interaction matrix using
a gaussian function that fits the core of the image.

Fig. 3. Recorded estimation of the actuator phase influence. Same power law scale for all the actuators. The scale
is stretched to show effects of actuators at the edge of the pupil. The dark cross is about 10 times fainter than the
central core for central actuators.

First, the geometry (pitch, orientation) of the actuator grid is measured on theφestimate of the 10x10
most central actuators. On the same actuators, we measure the median width in both direction and
the amplitude of the central core with a gaussian fitting algorithm. A synthetic grid of actuators using
these values is then created to simulate our synthetic interaction matrix. We remove the edge actuators
from the matrix when they have a low impact on the pupil phase.

The generalized inverse of the matrix is calculated using a Singular Value Decomposition algo-
rithm and removing the lowest singular values. The control matrix obtained can be multiplied by the
vector measuringφestimate to calculate the set of voltages to send to the DM. We use a simple inte-
grator control low with a relatively low gain (g < 0.4). Note that the gain is proportional to the total
flux of the source [6]. As the aberrations are corrected, the coronagraph performance is getting better
and the speckles are getting fainter. Since we correct the residuals on several order of magnitudes, we
have to increase the source flux to minimize the readout noiselimitation and decrease the control gain
accordingly.

3.2 Estimation of bench defects

First, let’s estimate the aberrations on our bench before correction with the DM. These aberrations
include the errors introduced by the DM. We flattened the DM using a commercial Shack-Hartmann
wavefront sensor using a 32x32 lenslet array. The absolute precision of the instrument is given to 10
nm but we had to introduce a dedicated optical arm to image thepupil on the sensor. Defects on this
arm have been calibrated using a point source and we expect a precision of the order of 20 nm over
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the frequency measured by the sensor. We show in Figure 4 (right), the average radial profile for the
PSF intensity (without coronagraph) compared to the average radial profile for the image with the sole
coronagraph (no reference pupil). The image correspondingto this last profile is shown in Figure 5
(upper left image).

Fig. 4. Left: Pupil illumination measured on the test bench. Right:Average radial profiles of PSF (solid, up), coro-
nagraphic image (solid, bottom), numerically simulated coronagraphic images using phase (dashed) or amplitude
(dotted), and reference image (dashed-dotted).

We compared this profile with several simulated profiles of FQPM images obtained with different
phase assumptions. A rather good fit is shown in Figure 4 (right, dashed line) and is drawn for a phase
of 0.3 rad RMS (corresponding to 30 nm RMS) and a PSD of this phase in f −2.5. The low frequency
is a little overestimated between 1 and 2λ/D and underestimated until 16λ/D. But for the spatial
frequency below 13.5λ/D (cut-off frequency of the DM for this test), this may come from the way we
flattened the DM. Indeed, the DM has been flattened directly onthe test bench so it certainly corrected
part of the bench lowest frequencies that we took good care tocorrect. Since the positioning of the
DM with respect to the sensor was noisy, it may have induce DM flat errors in the spatial frequency
between 2 and 13.5λ/D. A peak in the radial profile also appears for spatial frequency around 26-27
λ/D which corresponds to twice the cut-off frequency of the DM correction. It corresponds to small
scale structure with a typical size equal to the actuator pitch. As shown on the upper left image in
Figure 5, theses defects are localized on the images and are well known features for this DM [12].

We can also estimate the variance of the amplitude defects using an image of the pupil illumi-
nation recorded on the bench (Figure 4, left). From this image, the level of the amplitude defects is
estimated at about 10% RMS in intensity. Sub-actuator structures clearly appear, as well as a low spa-
tial frequency effect coming from the actuators on the edges of the DM. Introducing these estimated
amplitude in our simulation can help us take them into account. It sets the level of the residual speckles
if all the phase was corrected. We notice that its level at twice the cut-off frequency does not reach the
residual level of the coronagraphic image. The sub-actuator structures must also affects the phase but
can not be measured on the pupil illumination and the spatialresolution ofφestimate is not good enough
to measure them with our setup. In Figure 4, we also plot the average radial profile of the reference
image normalized to the PSF image (|AR|

2). Its contribution to the SCC imageI is negligible unless
correction level reaches 10−7 or lower. Its relative flatness over the corrected area (13.5x13.5λ/D) is
in agreement with our approximation of a constantAR that led us from Eq. 9 to Eq. 10.

3.3 Laboratory results after correction using phase and amplitude estimated by the SCC

The correction is applied on the DM as described in Sect. 3.1.The correction converges in a few
iterations to a readout noise limited image. We need to increase the source flux, decrease the gain
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accordingly and restart the correction a few times until we reach a constant residual speckles distribu-
tion. This final image is shown in Figure 5 (top centered image) and the average radial profile is given
in Figure 6 (left, solid line) and compared to the case with nocorrection (left, dashed line). The DM
helps to decrease by a factor 100 at least the level of the coronagraphic image between 2 and 10λ/D
and the mean speckle level is below 3.10−6 between 4 and 12λ/D.

No correction Phase correction Phase+ ”amplitude” correction

Recorded data

Simulated data

Fig. 5. Comparison between recorded and simulated data without correction, with correction of phase, and with
correction taking into account phase and amplitude. The scale is a power law and the same for all images but
uncorrected image have been divided by 100 to reach the same range level than the corrected images.

We notice that the level of the image after the cut-off frequency is improved by the correction
even if we specifically remove these frequencies from the phase estimation (Eq. 10). This is certainly
coming from the fact that sub-actuator structures vary whencorrecting and these structures have an
effect at these frequencies and certainly both in phase and amplitude. At the position of twice the
DM frequency cut-off, the level also seems to improve but this is an artifact coming from the fact
that diffracted structures saturate the detector (see images in Figure 5). We also draw on this figure the
simulated correction assuming the same amplitude and phaseas in Sect. 3.2 but with all the frequencies
reachable by the DM set to zero in the phase PSD. We notice thatthe level reached is higher than
expected in the correction area and lower in the external area. It may be an underestimation of the
amplitude error which should dominate in the correction area and an overestimation of the phase
outside of this area. This also visible when comparing simulated and recorded images in Figure 5.

Since amplitude defects may set the limitation inside the correction area, we choose to correct
for them in half the field. We use both phase and amplitude estimates given by Eq. 10 and apply the
technique proposed by Borde & Traub 2006 [13] to estimate thevoltage to send to the DM and correct
for both defects in half the field (top right image in Figure 5). We calculate the average radial profile
only on the corrected side (right side) and plot it in Figure 6right (solid line). The residual speckles
gets lower than 4.10−7 between 4 and 12λ/D. We also compare the data to numerical simulation
using the same hypotheses than previously. The level reached is close to the one simulated except for
uncorrected frequencies where the phase level is overestimated. The underestimation of the amplitude
does not appear on the radial profile but clearly appears whencomparing simulated and recorded
images: the left level of the lower right image in Figure 5 is much fainter than the one effectively
recorded. Increasing the amplitude defects inside the correction would better explain the recorded
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image for both sole phase and phase+amplitude corrections. Besides, it could also explain the limited
level of residual light reached when correcting phase errors only on the full correction area.

Fig. 6. Left: Average radial profile for recorded uncorrected image(dashed), recorded phase corrected data (solid),
simulated phase corrected data (dotted). Right: Average radial profile for recorded uncorrected image (dashed),
recorded phase+amplitude corrected data (solid), simulated phase+amplitude corrected data (dotted).

4 Conclusion

We demonstrated that the concept of Self-Coherent Camera coupled with a Four Quadrant Phase mask
coronagraph is working in laboratory environment with monochromatic source. The simple linear
phase estimation we use is enough to reach correction well inagreement with the simulation. When
correcting phase over the full correction area of the DM (13.5x13.5λ/D), the level of residual light is
below 3.10−6 between 4 and 12λ/D mostly limited by amplitude errors. When correcting for phase
and amplitude errors in half the field, the level of the residual speckles gets lower than 4.10−7 between
4 and 12λ/D. Improvements can be obtained when using more optimized correction algorithm that
minimize the light inside the correction area instead of minimizing the phase in the pupil as presented
in this paper. This will be presented in a forthcoming paper.Chromatic tests must also be performed
to estimate more precisely the overall performance of such an instrument on a telescope.
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