Advancement of AO Technology for the Next Generation of Extremely Large Telescopes: MEMS and Laser Guide Stars

Speaker: Donald Gavel
UCO/Lick Observatory, University of California, Santa Cruz

September, 26 2011

Collaborators:

Renate Kupke

Daren Dillon

Bruce Macintosh

Claire Max

Sandrine Thomas

Andrew Norton Katie Morzinski Rachel Rampy Jay Dawson, Lawrence Livermore National Laboratory

Paul Bierden, Boston Micromachines

Outline of Presentation

Context

- High contrast AO (exoplanet)
- Diffraction limited astronomy with large apertures
- AO for the visible bands
- Overview of critical research
 - Metrics for AO performance
 - Deformable mirrors (in particular, MEMS)
 - Guide star laser
- AO systems under development

Drivers for AO technology

Exoplanets

- High contrast => high Strehl => finer sampling for the DM and WFS on the aperture.
- Precision coronagraphy, scattered light suppression

Large Aperture AO

- Larger format actuator arrays
- Higher stroke (~D^{5/6})
- Multiple copies of AO system for wide field coverage
- Processing power

AO for the visible bands

- Spatial sampling $\sim (D/r_0)^2$; $r_0 \sim \lambda^{6/5}$
- Guide stars $\sim (1/\theta_0)^2$; $\theta_0 \sim \lambda^{6/5}$
- Extraordinary precision and control of a number of additional error terms (calibration, non-common path error, drifts, flexure...)

Metric of AO: Speed

Speed ~ 1 / Exposure time to a given SNR

Constant sampling

Constant # degrees of freedom

- Assumes pixels Nyquist sample in each situation
- Time to reach SNR=5 on m_v=30 star
- "Signal" is DL core (AO), or seeing disk (no AO)
- Noise ...
- Strehl idealized to spatial sampling term only
- AO throughput ~50%
- Warm AO system optics
- r0=10cm, d=10cm (nominal)
- Hi2RG detector with best/goal QE, read noise, dark current, well capacity

Speed gain with AO relative to no AO

Constant sampling

Constant # degrees of freedom

Metric of AO: Information rate

- Speed measures only raw sensitivity
- Relative information accounts for increased resolution:

$$I = \left[1 + 2log_2 \left(\frac{\theta_{seeing}}{\theta_{DL}}\right)\right] \left(\frac{\tau_{noAO}}{\tau_{withAO}}\right)$$

With AO (constant sampling)

No AO

Metric of AO: A Ω

- Information rate increases ~linearly with multiplexing
- Wide field AO: MCAO, MOAO
- Hopefully, cost, complexity, etc. scale no more than linearly with $\boldsymbol{\Omega}$

Big ticket items

- Number of degrees of freedom:
 - Deformable mirror
 - Wavefront sensor
 - Real-time processor

Big ticket items

Number of laser guide stars

MCAO MOAO

and ... power per laser guide star

MEMS Deformable Mirrors

- Consortium to build 4,000 and develop 10,000 actuator devices (BMC)
 - Gemini Planet Imager
 - Keck Next Generation Adaptive Optics
 - Thirty Meter Telescope
- High density interconnect, packaging, & electronics (BMC)
- Higher stroke actuator designs (UCSC)

ShaneAO implements a new 3-meter AO system with improved performance

- using the latest technology and lessons-learned at LAO
- Diffraction-limited I, J, H, K bands
- High Strehl
 - 32x32 MEMS DM
 - selection of subaps adjust to seeing and brightness of guidestar
 - New sodium guidestar laser,
 5 10 x brighter than current
- High optical throughput
 - "Holy Grail" silver coatings
 - Note: we're ignoring K-long for now, which would require cooling.

- Improved QE of Hawaii RG detector: 80% vs 62%, plus sensitivity into R band
- Improved opto-mechanical design stability
- Improved automation of setup and observing processes

AO optical design

AO system optical relay design is complete

Woofer-Tweeter architecture, woofer performs tip/tilt

Tip/tilt star Is partially corrected (by woofer) – improves sky

coverage

 Tip/tilt sensor also senses slow focus – to track sodium layer height variation

AO pupil map

8x8 subaperture (d=40 cm)

16x16 subaperture (d=20 cm)

AO bench design

AO bench mounting to Shane Cassegrain focus

Concept design at this point

IRCAL optical design

- Optical design mostly complete
- Location of detector changed
- Location of cold pupil changed
- 20 arcsec FOV
- R=700 spectroscopy mode, with grism

Hi2RG infrared detector and ASIC

Laser upgrade for ShaneAO

Old system:

- NG-YAG pumped dye laser
- 150 ns pulse
- Deliberately modulated to cover 1.2 GHz dopplerbroadened line

New system:

- Solid state, sum-frequency 938+1532->589 (in PPSLT crystal)
- Solid state fiber amplifiers for the two IR lines

Both systems developed at Lawrence Livermore (LLNL)

Laser pulse format can be adjusted to optimize system performance

- Needs to "look" like narrow CW to the sodium atoms => narrow line width
- Rayleigh gate pulse ~30 μs pulse every 300 μs

Pulsing for Elongation Mitigation

Modeling indicates an optical pumping advantage in optimzing CW pulse length

 Intensity, linewidth, and "repumping" optimized to overcome the quenching due to Larmor precession caused by earth's magnetic field

Return modeling indicates considerable improvement over existing dye laser system

Laser status

- Laser is completed and tested at LLNL
 - 10 watts output power
 - Pulsed, with programmable pulse format. Long pulse looks like CW to sodium => giant return gain
- LLNL is contracted to deliver and set up laser at UCSC
- UCO to "harden" for mountaintop operation

Laser Launch

Launch Telescope

Beam diagnostics

~ 30 m of photonics crystal fiber

Fiber laser enclosure

Existing

Dye Laser

Summary

- AO for ELTs => challenging cost and complexity
- Pathfinder work at LAO:
 - MEMS
 - MEMS enables high # degrees of freedom
 - Issues of reliability, stroke
 - Guide Star Laser
 - High efficiency (return/watt) means less total power needed

Programs

- Gemini Planet Image 4k MEMS DM
- ShaneAO 1k MEMS DM, pulsed fiber laser