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1. Introduction and aim (continued) 3. Performance of XAO
The Durham High-order Demonstrator (DHD) is a proposed XAO instrument design for Further simulations were carried out to assess the effects of varying guide-star flux. Fig 3
the 4.2m-class William Herschel Telescope on La Palma, Canary Islands. Our principal demonstrates that for currently available CCD or CMOS technology, the limiting
interest in this instrument is designing a flexible-testbed into which we can use our magnitude is m,=4 to retain XAO performance, but good correction is retained to m,=7.
expertise in AO to develop high-order AO which is suitable for visible observations. ' D Fig 3. Effects of
Addtionally, it then becomes a facility which provides a high-order AO corrected beam o —#—sCMOS varying NGS guide-
0.96 —m—— — A em
for further instrument development such as coronography. oo "“"-’-'-';;f::-:---..._ star brightness, using
This poster shows our design and limiting performance estimates. Included is a novel z 0.9 | .' a model for a CCD
wavefront sensor designed to characterise the corrected beam PSF and resolve quasi- % 0.9 X camera (7e- read-
static aberrations that lead to long-term speckle. Finally we note the scientific targets z 088 - noise, 85% QE) and a
of opportunity of XAO on 4m-class telescopes. - ’ CMOS camera (Se-
0.84 read-noisy, 57% QE).
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2. Overall design ot maenitade
Fig 1 (right) shows the basic design of the lfrom ADC
DHD, consisting of a NGS high-order WFS,a [ i : :
split ‘woofer-tweeter’ DM design and a low- '[—)OI\XV'Order 3. Characterisation WFS
bandwidth characterisation WFS. Assuminga :y\ from ~  Blased | o
median Fried coherence length of r,=12 cm, l i bMs = grating Fig 4. The characterisation
: : i | —> WFS. The design is a
the natural choice for the WFS will be a | ! Real-Time 2. T
30x30 Shack-Hartmann design with optional gﬁh'order | Control Spatial filter \ combination of a Mach-
g : | ! Zhender interferometer with
spatial filter to reduce effects of spatial ] | A oot |
aliasing. The corresponding high-order DM is | | . p?mt- [ffraction
|
a 1k Boston MEM mirror, while the choice of l : YA l P' | l l , u?terferi;net;:
(l
low-order DM is currently a higher-stroke High- ... |instrument to XAO it i " compfmson. WI. i
_ Order Characterisation| —y instruments (Hhnt | WFS, this design is ~100
144-actuator Boston MEM mirror. The RTC WEFS s | <4—|camera| (camera , N
. . . WEFS A il times more sensitive.
will consist of the in-house DARC system i |
which has flexible CPU, GPU, or FPGA Fig 1. Overview of the DHD system
capabilities and this will permit easy architecture. Blue represents the path the

o . The characterisation WFS concept is shown in fig 4. It is an approximately achromatic
characterisation of various control light takes, red represents control signals.

, , interferometer, made possible by use of the blazed optic to introduce achromatic tilt
algorithms to be implemented on-sky.

into a spatially filtered beam in one arm of what is otherwise a Mach-Zhender design.

These aspects will be controlled at 1kHz. The characterisation WFS is of a new design _ , , , , , ,
_ o , T When interfered with the unfiltered beam, this results in pairs of fringe patterns at the
(see following panel) and is intended for two purposes: first, to act as a characterisation

tputs which t of phase. If these i btracted, then the Fouri
instrument for the PSF, and, second, integrated into the RTC for XAO imaging where CUIPULS WRILH are 1L OUL OF phase =o€ IMAgEs are sUbratte eh the rourier

high-contrast imaging is required. In this second case, the characterisation WFS is transform results two side-bands that are from the fringe term. Filtering out one side-

required to measure any quasi-persistent but changing phase errors. It can achieve the band and applying an inverse transtorm leaves a complex term whose phase directly

first task by use of its spatial filter which permits the intensity of the PSF core to estimates the input phase. Per sub-aperture, at a minimum 4 pixels are required.

measured relative to the overall throughput. Several issues are important to estimate performance. To retain a fringe visibility of at
least 0.25 over R-band, assuming a flat-spectrum, requires aberrations be limited to A/2.
Naturally, using a narrower filter results in a larger range. However, expected XAO

performance in R is “A/10. This implies the spatially filtered beam will retain

3. Performance simulations, XAO component

consistently high-throughput. For 1 second integration times, the atmospheric

Using the parameters in panel 2, a Monte Carlo simulation of the SCAO system was aberrations will be removed. Finally, working in the visible, only issues of photon noise

carried out assuming additionally a camera with readout noise of 5e™ at high-light

need be considered with a EMCCD. If 1% of the incoming beam is diverted to the

levels (m,=0). The resulting Strehl ratios are shown in fig 2. characterisation WFS, 10% throughput overall, using a 1s integration time, and a
requirement for errors of A/100 (Strehl|~=0.995) then the limiting magnitude is m =10.
' ] Fig 2. Expected Strehl
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E / ratios from the XAO : o
08 - Ve component assuming 4. XAO science & opportunities
o7 / realistic CCD parameters.
9 0.6 - / The green region The DHD is intended to be an open design upon which XAO technologies such as
= 05 / represents XAO-quality coronographs, DM control, and issues of persistent speckle can be studied and
% 04 : / correction. No variability implementations attempted. As such its target location is the gravity-stable Nasmyth
0.3 - / in throughput was platform of the WHT telescope.
0.2 / explicitly considered. As regards science opportunities, the clearest are those which benefit from the high-
01 E[/ constrast ratios with XAO: circumstellar debris discs, including the internal structure
D L L L L L L L L T e e N B B : e : : M .
0 oa oe os 4T T T T, especially where exoplanet locations are involved (e.g. Formalhaut or B Pictoris); the
Wavelength (um) imaging and astrometry of close binaries although interacting pairs are unlikey to be
In this idealised case (aligned optics, high-light level, no telescope vibrations) it is clear resolvable; follow up studies of evolved super-giant stars such as Betelgeuse or Mira
that suitable performance can be achieved in the near-IR for XAO capabilities but good variables.
correction is available into the visible. (continued) The use of one sodium LGS for XAO is not possible for a 4m pupil if high-constrast ratios

are required, but we can estimate from our results that for a LGS brightness of m=10, that

a Strehl ratio of ~0.7 can be achieved using the same geometry and accounting for focal
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anisoplanatism. This offers, for example an opportunity for integrations on faint stars for
companion searches, such as brown dwarfs or even directly brown dwarf binaries.



