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Overview

« Context: Tomographic AO for VLT and ELT

«  Tomographic control solutions

o  Simplifying Control Schemes into Single Matrix VectouMply
e Simulation Results

 Discussion & Perspectives
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Tomographic AO for VLT

MUSE and its AO system GALACSI

Adaptive Optics Facility: Deformable Secondary Mirror (DSM) on 8m unit of VLT
MUSE: Multi Unit Spectroscopijiigs
. 2nd generation instrumer
. Uses AOF, with Laser La
. GLAO/LTAO correction

field spectrograph in visible.
n LGS)
with DSM

MUSE Narrow Field Mode (NF
. 7.5"x7.5” FoV
. 4 LGS @10” off axis

. 1 NGS for low order modes
. RTC: SPARTA platform -> Single MVM




Tomographic AO for ELT
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Context:

Tomographic AO control solutions

LTAO for VLT or ELT

— Relies on tomographic control solutions.

* Ok K

______

___________________

z

Terminology :
* S-MVM : single matrix vector multiply
* M-MVM : multiple matrix vector multiply
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Control
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Tomoaraphic AO control solutions

e

. GLAO: generalized inverse of interaction matrix, integrator controller
U =U. + RO Y

— S-MVM but No tomographic abilities, poor performance
. Virtual DM control
reconstruction in the 2 layers into the 2 DMs from closed-loop data
2 DM = actual ground DM + additional virtual DM in altitude
+ proiection onto the real DM. S ) ¢ ). ¢
U =U._ + RVdek
R“™ deduced from min. var. reconstructor with « fudge factor

tomo

WM =c, P’D"(DP,C,PID" +C, )" L, P

— S-MVM. Sub-optimal. Tuning issues et




Tomographic AO control solutions ™
. Pseudo Open Loop Control (POLC): static minimum variance reconstructor,
applied on pseudo open-loop measurement + temporal filter:

¢k+1 =a ¢k + IB ¢k—1 + dek_l and U, = ,8:0¢k+1

where: _ i
_ €1 _\A/tcl)vlrr\é(yk +M mtuk—z) - &k—l
In another form:

U =au_ +pu._,+&F, &,
— Tomographic reconstruction, M-MVM

. Linear Quadratic Gaussian: optimal solution according to minimum residual
phase variance of the dynamic closed-loop control problem

¢k+1/k = A¢k/k—1 +L, (Yk - yk/k—l) with 9k/k—1 = D(Pa¢k—1/k—1 - Nuk—z)

U, = ,8:0¢k+1/k

— Optimal tomographic reconstruction and control. M-MVM
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Context:
Tomographic AO for VLT or ELT

ATLAS

— Relies on tomographic control solutions (vDM, POLC, LQG ...).
— Efficient solutions imply Multiple Matrix Vector Multiplications (M-MVM)
— Question : Can we find a S-MVM control solution with good performance ?
— would fit in current RTCs such as SPARTA
— could limit the computation burden for ELT systems
LTAO on ELT (ATLAS) is 60000 slopes at 500Hz (1Gb/s input)
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S-MVM control structure

Goal: propose a tomographic control solution for LTAO based on a S-MVM to

reduce complexity/comply with RTC architecture of the type:
U =auc., + U, , +Ry,
Where Y, are measurements,
U, are controls,
R is a matrixand @, 3,0 scalar gains

Example : simplest possible R: inverse of interaction matrix -> GLAO
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Simplified control scheme =

Objective: « simplify » M-MVM control solutions (POLC, LQG) into S-MVM solutions
Example with LQG:

Basic equations Devi = AD + Lo (Vi = Vi)
U =PP.r
In another way: U, =PAd, .+ PL. (Vi = Yiskr)
Obstacle to S-MVM: / \
permutation required estimated measurement to be handled

Possible solutions:
. Permutation is possible: find B such as BP = PA
B happens to be very close to B ~ a ldentity — can be approx. by scalar gain.
. + Approximation : Estimated measurements taken as zero
Either with POLC or LQG: a S-MVM solution can be derived such that

u =au_+pu._,+Ry,
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Simplified control scheme: discussion

Questions :
stability & performance of the DLQG and DPOLC in the form

u =au_+pu._,+Ry,

Control solutions derived with this approximations proves to be unstable:

. Approximations lead to @,  that do not satisfy stability constraints !

. In the end, these coefficients should be fixed wrt stability criterion

. Similarly to POLC approach (Gilles et al.) we set new coefficients so that :
a+ <1 0=05

. Gain matrix R still derived from the initial control law (POLC or LQG)

one can hope it preserves some good properties of original control
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Simplified control scheme: performance

e

Case of study: end to end numerical simulation on LTAO system

(low order to speed-up calculations)
8 m telescope

3 or 10 layer turbulence profile, Cn2 and wind profiles deduced from VLT
profiles

Good or poor seeing conditions (0.68” or 0.95")
4 Shack —Hartmann WFS, 8x8 sub. apert.

+ noise (photon noise regime)
NGS at 30" off-axis
DM is 9x9 piezo stack 25% mech. coupling
500 Hz frame rate, 2 frame delay
Analysis/correction @ 2.2um
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DLQG, POLC and DPOLC provide intermediate performance between vDM and
LQG, small advantage for Degraded LQG
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Conclusions

. S-MVM control algorithm have been derived from POLCorL QG
. Reduces on-line computation load
. Provides stable and efficient tomographic control
. Performance are in between vDM and optimal LQG
. Despite the drastic approx., DLQG keeps LQG good properties :
o  Dbetter performance and smaller sensitivity to noise

 robustness : not very sensitive to parameter tuning

Performance evaluation in MUSE configuration are plann ed

on Octopus @ ESO
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Without being as extreme as S-MVM

O Use similar approximation to derive a M-MVM LQG in the voltage space
would allow reconstruction on many layers [Costille et al., this conference]
with no increase of real time burden
(nice property of POLC in voltage space)

U Go for Sparse iterative methods and avoid solving Ric cati equation

O Kalman gain deduced from physical considerations [Correia AO4ELT 2009]
O Ensemble Kalman Filter [see Morgan Gray (LAM) this conference]

O Exploit spatial invariance of the problem
ultra-fast Kalman gain computation based on spatial invariance
& reduction of real-time calculations
[Paolo Massioni JOSA A 2011 accepted]

U Keep an eye on properties of interest

performance (temporal + noise + tomography(...) errors), robustness
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