

Efficient control schemes with limited computation complexity for Tomographic AO systems on VLTs and ELTs

C. Petit, T. Fusco, <u>J.-M. Conan</u>: ONERA M. Le Louarn, P.-Y. Madec: ESO

return on innovation

Overview

- Context: Tomographic AO for VLT and ELT
- Tomographic control solutions
- Simplifying Control Schemes into Single Matrix Vector Multiply
- Simulation Results
- Discussion & Perspectives

Tomographic AO for VLT

MUSE and its AO system GALACSI

Adaptive Optics Facility: Deformable Secondary Mirror (DSM) on 8m unit of VLT

MUSE: Multi Unit Spectroscopi

2nd generation instrumer

Uses AOF, with Laser La

GLAO/LTAO correction p

MUSE Narrow Field Mode (NF

7.5"x7.5" FoV

4 LGS @10" off axis

1 NGS for low order modes

RTC: SPARTA platform -> Single MVM

field spectrograph in visible. n LGS)

with DSM

Tomographic AO for ELT

Context:

LTAO for VLT or ELT

→ Relies on tomographic control solutions.

Terminology:

- S-MVM : single matrix vector multiply
- M-MVM : multiple matrix vector multiply

GLAO: generalized inverse of interaction matrix, integrator controller

$$u_k = u_{k-1} + R^{glao} y_k$$

- → S-MVM but No tomographic abilities, poor performance
- Virtual DM control

reconstruction in the 2 layers into the 2 DMs from closed-loop data

 L_2

2 DM = actual ground DM + additional virtual DM in altitude

+ projection onto the real DM.

$$u_k = u_{k-1} + R^{vdm} y_k$$

 R^{vdm} deduced from min. var. reconstructor with « fudge factor »:

$$W_{tomo}^{MV} = C_{kol} P_{\alpha}^{T} D^{T} \left(D P_{\alpha} C_{kol} P_{\alpha}^{T} D^{T} + \rho C_{w} \right)^{-1} L_{3}$$

→ S-MVM. Sub-optimal. Tuning issues

Pseudo Open Loop Control (POLC): static minimum variance reconstructor, applied on pseudo open-loop measurement + temporal filter:

$$\hat{\varphi}_{k+1} = \alpha \, \hat{\varphi}_k + \beta \, \hat{\varphi}_{k-1} + \delta e_{k-1}$$

$$u_k = P_{eta=0} \hat{oldsymbol{arphi}}_{k+1}$$

where:

$$e_{k-1} = W_{tomo}^{MV}(y_k + M^{int}u_{k-2}) - \hat{\varphi}_{k-1}$$

In another form:

$$u_k = \alpha u_{k-1} + \beta u_{k-2} + \delta P_{\beta=0} e_{k-1}$$

→ Tomographic reconstruction, M-MVM

Linear Quadratic Gaussian: optimal solution according to minimum residual phase variance of the dynamic closed-loop control problem

$$\hat{\varphi}_{k+1/k} = A \hat{\varphi}_{k/k-1} + L_{\infty} (y_k - \hat{y}_{k/k-1})$$
 with $\hat{y}_{k/k-1} = D(P_{\alpha} \hat{\varphi}_{k-1/k-1} - Nu_{k-2})$

$$u_k = P_{\beta=0} \hat{\varphi}_{k+1/k}$$

→ Optimal tomographic reconstruction and control. M-MVM

Context:

Tomographic AO for VLT or ELT

ATLAS

- → Relies on tomographic control solutions (vDM, POLC, LQG ...).
- → Efficient solutions imply Multiple Matrix Vector Multiplications (M-MVM)
- → Question : Can we find a S-MVM control solution with good performance ?
 - would fit in current RTCs such as SPARTA
 - could limit the computation burden for ELT systems

LTAO on ELT (ATLAS) is 60000 slopes at 500Hz (1Gb/s input)

S-MVM control structure

Goal: propose a tomographic control solution for LTAO based on a S-MVM to reduce complexity/comply with RTC architecture of the type:

$$u_k = \alpha u_{k-1} + \beta u_{k-2} + \delta R y_k$$

Where y_k are measurements,

 u_k are controls,

R is a matrix and α, β, δ scalar gains

Example: simplest possible R: inverse of interaction matrix -> GLAO

Simplified control scheme

Objective: « simplify » M-MVM control solutions (POLC, LQG) into S-MVM solutions

Example with LQG:

$$\hat{\varphi}_{k+1/k} = A \hat{\varphi}_{k/k-1} + L_{\infty} (y_k - \hat{y}_{k/k-1})$$

$$u_k = P\hat{\varphi}_{k+1/k}$$

In another way:

Basic equations

Obstacle to S-MVM:

 $u_{k} = PA \hat{\varphi}_{k/k-1} + PL_{\infty}(y_{k} - \hat{y}_{k/k-1})$

permutation required

estimated measurement to be handled

Possible solutions:

- Permutation is possible: find B such as BP = PA
 B happens to be very close to B≈ α Identity → can be approx. by scalar gain.
- + Approximation : Estimated measurements taken as zero

Either with POLC or LQG: a S-MVM solution can be derived such that

$$u_k = \alpha u_{k-1} + \beta u_{k-2} + \delta R y_k$$

Simplified control scheme: discussion

Questions:

stability & performance of the DLQG and DPOLC in the form

$$u_k = \alpha u_{k-1} + \beta u_{k-2} + \delta R y_k$$

Control solutions derived with this approximations proves to be unstable:

- Approximations lead to $\,lpha,eta\,\,$ that do not satisfy stability constraints !
- In the end, these coefficients should be fixed wrt stability criterion
- Similarly to POLC approach (Gilles et al.) we set new coefficients so that :

$$\alpha + \beta < 1$$
 $\delta = 0.5$

Gain matrix R still derived from the initial control law (POLC or LQG)
 one can hope it preserves some good properties of original control

Simplified control scheme: performance

Case of study: end to end numerical simulation on LTAO system

(low order to speed-up calculations)

- 8 m telescope
- 3 or 10 layer turbulence profile, Cn² and wind profiles deduced from VLT profiles
- Good or poor seeing conditions (0.68" or 0.95")
- 4 Shack –Hartmann WFS, 8x8 sub. apert.
 - + noise (photon noise regime)
- NGS at 30" off-axis
- DM is 9x9 piezo stack 25% mech. coupling
- 500 Hz frame rate, 2 frame delay
- Analysis/correction @ 2.2µm

Compared performance versus noise level:

3 Layer profile
Similar result at
good and poor seeing

Observations:

- Lowest performance is GLAO
- Optimal performance always provided by LQG
- POLC, DPOLC, LQG give same performance at high SNR
- DLQG, POLC and DPOLC provide intermediate performance between vDM and LQG, small advantage for Degraded LQG

Compared performance versus gain:

3 Layer profile Similar result at good and poor seeing

Observations:

• DLQG is less sensitive to the choice of the gair δ

Conclusions

- S-MVM control algorithm have been derived from POLC or LQG
- Reduces on-line computation load
- Provides stable and efficient tomographic control
- Performance are in between vDM and optimal LQG
- Despite the drastic approx., DLQG keeps LQG good properties :
 - better performance and smaller sensitivity to noise
 - robustness: not very sensitive to parameter tuning
- Performance evaluation in MUSE configuration are planned on Octopus @ ESO

Trade-off optimality – computation cost

without being as extreme as 3-wivivi:
☐ Use similar approximation to derive a M-MVM LQG in the voltage space
would allow reconstruction on many layers [Costille et al., this conference]
with no increase of real time burden
(nice property of POLC in voltage space)
☐ Go for Sparse iterative methods and avoid solving Riccati equation
☐ Kalman gain deduced from physical considerations [Correia AO4ELT 2009]
☐ Ensemble Kalman Filter [see Morgan Gray (LAM) this conference]
☐ Exploit spatial invariance of the problem
ultra-fast Kalman gain computation based on spatial invariance
& reduction of real-time calculations
[Paolo Massioni JOSA A 2011 accepted]
□ Keen an eye on properties of interest

■ Keep an eye on properties of interest

performance (temporal + noise + tomography(...) errors), robustness

