

Performances of MCAO on the E-ELT using the *Fractal Iterative Method* for fast atmospheric tomography

Michel Tallon¹, Clémentine Béchet², Isabelle Tallon-Bosc¹, Miska Le Louarn², Éric Thiébaut¹, Richard Clare², Enrico Marchetti²

1 - Centre de Recherche Astrophysique de Lyon, France2 - European Southern Observatory (ESO), Germany

Tallon et al.

Outline

- "Experimental setup"
 - use MAORY configuration (E-ELT MCAO) as a test bench
 - ESO end-to-end simulator
- Short reminder on Fractal Iterative Method (FrIM)
- Calibrations & performances
 - noise levels, performances comparison
 - sensitivity of some FrIM parameters, number of iterations
- Some other effects
 - elongation, priors, Cn2 profile

MAORY configuration / 1

- 40m class telescope = Ø 42m
- Deformable mirrors : 9296 actuators
 - 0 km : 85 x 85, spacing: 0.5 m
 - 4 km : 47 x 47, spacing: 1 m
 - 12.7 km : 53 x 53, spacing: 1 m
- Wavefront sensors : 60492 slopes
 - 6 LGS, 84 x 84 subap.
 - on a Ø 2 arcmin circle
 - 500 ph/subap.
 - RON 3e-
 - 2 NGS for tip/tilt, 1 NGS for 2 x 2 subap.
 - here on a Ø 2.7 arcmin circle, edge of patrol field
 - 500 ph/subap., H band
 - RON 5e-
- 500 Hz loop frequency
- Cn2 profile : 9 layers, $r_0 = 12.9$ cm

MAORY-like configuration / 2

Strehl ratio in K on 5 x 5 PSF

Octopus as the end-to-end simulator

FrIM reminder /1

- *u* are statistically independent modes.
- Solve in space of the statistically independent modes
 - Using change of variable: $w = \mathbf{K} \cdot \mathbf{u}$

$$\left(\mathbf{K}^{\mathrm{T}} \cdot \mathbf{S}^{\mathrm{T}} \cdot \mathbf{C}_{n}^{-1} \cdot \mathbf{S} \cdot \mathbf{K} + \mathbf{I}\right) \cdot \boldsymbol{u} = \mathbf{K}^{\mathrm{T}} \cdot \mathbf{S}^{\mathrm{T}} \cdot \mathbf{C}_{n}^{-1} \cdot \boldsymbol{d}$$

FrIM reminder /2

- Iterative method: preconditioned conj. grad.
 - Jacobi, or so-called "optimal" preconditioner
- Number of iterations independent of N (# deg. of freedom)
 - ~ 3 iterations in closed-loop
 - O(N)
- Minimum variance yields:

- In the following:
 - E : not used at the moment
 - F simplified : 3 layers at same altitudes as the DM
 - same as reference control method on Octopus (interaction matrix)
 - minimal amount of calculations and latency for RTC

Calibration of noise / LGS

• No matching model of errors on data

 \Rightarrow calibration needed

- For a quick calibration:
 - 100 loops
 - LGS can measure tip/tilt
 NGS data negligible
 - no spot elongation
- Scaling at optimum: $\sim x10$

Calibration of noise / NGS

- No matching model of errors on data
 ⇒ calibration needed for NGS
- For a quick calibration:
 100 loops
- But : no signal on low orders !
- Vibration added on the telescope
 - tip/tilt = circular path in the focal plane
 - Ø1λ/D

9

Performances & comparison

- Comparison with reference method on Octopus: "MVM"
 - use of interaction matrix, modal filtering, priors, different gains LGS/NGS, ...
- \sim same difficulty with PSF stabilization (plate scale modes)
 - cause: NGS noise level

Tallon et al.

Sensitivity to calibrated values

- Performances not very sensitive to scaling mismatch
- Model of the noises would be helpfull

Sensitivity to POLC gain & IMC

POLC = pseudo-open loop control IMC = internal model control

- POLC gain does not need to be very accurate.
- LGS (short exp.):
 - IMC is as good as POLC
- NGS (long exp.):
 - improvement is 2% only from IMC
- Needs for a lower gain for loworder modes.

Number of PCG iterations

- Preconditioned conjugate gradient for reconstruction
- losses:
 - 3 iterations : < 1%
 - 1 iteration : $\sim 10 \%$
- => 3 iterations is still enough.

Effect of spot elongation

- LGS centroiding with CoG, and RON=0
- Noise model not optimized yet •
 - assume : variance proportional to elongation

Acres

Usefulness of priors ?

- Without priors:
 - minimum norm solution in fractal space
 - stopped before convergence ~ regularization

Sensitivity to priors on Cn2 weights

- Priors on Cn2 weights have very limited effect
 - especially when tomographic error is dominent
- Number/altitude of layers is significant

Conclusions

- First results of FrIM in closed-loop for MCAO
 - good quality of the reconstruction achieved
 - confirm that 3 iterations are enough for reconstruction
 - the losses for < 3 iterations are lower than expected
- Next steps
 - Improvements expected with a "better use of NGS photons"
 - different gains on low-order modes
 - split tomography
 - ...
 - Revisit of the iterative optimization (\rightarrow RTC implementation)
 - Need of better noise models

