The Subaru Coronagraphic Extreme AO project: an XAO4ELT precursor
Authors
F. Martinache
Affiliations
Subaru telescope
Abstract
A diffraction-limited 30-meter telescope theoretically provides a 10 mas resolution limit in the near infrared. Modern coronagraphs like the Vortex, the 8OPM and the PIAA offer the means to take full advantage of this angular resolution allowing to explore at high contrast, the innermost parts of nearby planetary systems to within a fraction of an astronomical unit: an unprecedented capability that will revolutionize our understanding of planet formation across the habitable zone. A precursor of such a system is the Subaru Coronagraphic Extreme AO project. SCExAO combines a high performance PIAA-based coronagraph downstream Subaru’s AO188 AO system and a 1024-actuator MEMS DM. SCExAO employs advanced wavefront control schemes that make high contrast detection possible at 1 λ/D, providing for a few cases, the possibility to detect the light reflected by exoplanets. Moderate-high contrast detection in the super-resolution regime (<λ/D) is also possible using well calibrated closure quantities like closure-phase for a non-redundant (masked) aperture and its extension for to arbitrary apertures (Kernel-phase). Lessons learned from SCExAO’s incremental deployment plan during its first 2011 engineering campaign provides insights that will guide future development of high contrast instrumentation on an ELT.